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Context:

Recent advancements in deep learning have shown promising results in disentangling semantic
information within latent spaces of encoders [1,2]. Our team has recently developed a novel architecture
that can "distill" specific semantic factors from entangled latent spaces, enabling targeted semantic
transfer between images. Notably, this method has demonstrated the ability to generalize to unseen
conditions during training, such as transferring a previously unseen color to an object's appearance.

This breakthrough opens up exciting possibilities for more controlled and interpretable image
generation and manipulation. However, several critical questions remain unexplored, particularly
regarding the nature of the constructed latent space and its potential applications in state-of-the-art
generative models like diffusion models [2, 3, 4].

In our context of computational biology, the long-term vision is to develop a “virtual experiment
regenerator” allowing to modify selected attributes of an existing assay to generate “what if“ versions of
it. Typically, cell assays datasets [7, 8, 9] consist of imagery of cell culture perturbed by thousands of
different chemical or genetic perturbations that are partially replicated across different laboratories, cell
lines, staining conditions, microscopes, exposure-to-perturbation time, etc. Having the ability to reliably
separate (disentangle) these attributes and generate a virtual experiment with an unexisting
combination of conditions would represent a major leap in biology and drug discovery.

Project Description:

This research project aims to deepen our understanding of the disentangled semantic latent spaces
created by our novel architecture and explore their potential in enhancing conditional image generation.
The project will focus on four main objectives:

1. Latent Space Analysis: Investigate the properties of the constructed latent space, including its
smoothness and the nature of interpolations between known points. This will involve
developing visualization techniques and metrics to characterize the space's structure.

2. Diffusion Model Conditioning: Explore the feasibility and effectiveness of using our
disentangled latent representations to condition diffusion models. This will require adapting
existing diffusion model architectures and conditioning mechanisms [5] to incorporate our
semantic latent codes.

3. Adaptation for Robust Distillation on Heldout Set: Based on the findings from the previous
objectives, develop techniques to enhance the performance of our approach when working with
distillation on heldout data.

4. Generalization of Diffusion Models to Unseen Conditions: Assess the behavior of conditioned
diffusion models when provided with latent codes representing semantic factors not seen
during training. Analyze whether the output is scientifically meaningful, and develop methods to
quantify and improve generalization.

General-domain multi-label datasets such as [10, 11] will be used as ground truth and for easier
experimentation.
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Your role:

As an intern, you will play a crucial role in advancing this cutting-edge research and in the team. Your
responsibilities will include:

● Implementing and optimizing algorithms for latent space analysis and visualization.
● Adapting and training diffusion models to work with our disentangled semantic latent codes.
● Designing and conducting experiments to evaluate the performance and generalization

capabilities of the developed models.
● Regularly collaborating with team members and participating in team meetings.
● Documenting research findings and contributing to potential publications or conference

submissions.

Pre-requisites:

● Strong proficiency in Python and experience with deep learning frameworks (preferably
PyTorch).

● Very solid understanding of machine learning concepts, particularly in the areas of
representation learning and generative models.

● Familiarity with computer vision techniques and image processing.
● Ability to communicate effectively in English or French.

Nice to have:

● Experience with diffusion models or other advanced generative modeling techniques.
● Background in information theory or disentanglement metrics.
● Familiarity with latent space manipulation techniques.
● Interest in or experience with interpretable AI and controlled generation.

Application Process:

To apply for this internship, please submit your resume, a brief statement of interest, and any relevant
project/paper examples or GitHub repositories. Don't hesitate to contact us for more details about the
project or application process.
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