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Context

Graph signal processing (GSP) [1–3] and graph machine learning (GML) [4–6] are research fields
that aim to generalize classical concepts from signal processing and machine learning to data de-
fined on graphs. In GSP, classical operations such as filtering, sampling, and reconstruction are ex-
tended to graph signals, i.e., functions defined over the vertices of a graph [7,8]. In GML, neural net-
work architectures are adapted to graph-structured data, resulting in models such as graph neural
networks (GNNs) [9] and message-passing neural networks (MPNNs) [10]. GSP and GML are cru-
cial because graph-structured data appear in numerous applications, including social networks [3],
the web [11], recommender systems [12], biological networks [13], and knowledge graphs [14],
among others. A common challenge across these domains is the massive scale of the underlying
graphs, which often contain millions or even billions of nodes and edges [15]. Therefore, it becomes
essential to obtain compact representations from the original data, such as graphs with fewer nodes
and sampled or aggregated graph signals, enabling more efficient learning and processing.

In the GSP literature, a large body of work has addressed the problems of sampling and recon-
struction of graph signals [7, 16–18]. These works provide theoretical guarantees for reconstructing
graph signals from samples based on the spectral properties of the graph, guiding the design of op-
timal or near-optimal sampling sets [8, 19, 20]. However, these methods assume the original graph
is not modified and consider only the problem of sampling graph signals. In parallel, the GML
community has developed principled graph coarsening methods [21], including recent approaches
with message-passing guarantees [22, 23]. In graph coarsening, also called graph summarization
in some contexts [24], the general objective is to compress a large graph into a smaller, more man-
ageable representation while preserving the information that matters for a downstream task (e.g.,
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visualization, learning, storage). Typically, these approaches only consider topological summariza-
tion, whereas we consider both graph and signal summarization.
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Figure 1: Graph data summarization.

Establishing a principled framework for jointly
summarizing graph signals and topology with (i)
recovery guarantees for the signal and (ii) task-
level guarantees on the compressed topology
remains an open challenge. We address this
challenge by estimating higher-order structures
(e.g., cliques) and using them to induce an ag-
gregation operator and a coarsened graph as
shown in Figure 1, where maximal cliques are
used as the higher-order units. These higher-
level structures will enable us (i) to summarize
signals and reconstruct them with guarantees,
and (ii) to run GNNs directly on the summa-
rized representation while preserving down-
stream performance.

A key question we will study in this PhD thesis is: When are such higher-order structures infor-
mative and practically useful for graph summarization and learning? We target regimes where cliques
are common (e.g., community-like substructures), so that aggregation captures smooth variations
in the clique and preserves task performance. However, summarization should be structure-aware;
other structures like cycles or paths should be considered with different mapping functions. This
problem has broad applications, ranging from graph data compression and storage to efficient pro-
cessing of relational datasets in domains such as social networks, the web, recommender systems,
and biological systems.

Candidate profile

We are looking for candidates:

• Currently holding or finishing an M2 in engineering, data science, computer science, applied
mathematics, signal processing, statistics, or equivalent, with a strong background in signal
processing and machine learning. The student should have a genuine interest in working in
graph signal processing and geometric deep learning.

• Have strong programming skills in Python (including PyTorch).

• Have a genuine interest in understanding the mathematics behind graph signal processing
and geometric deep learning (this is a strong requirement).

• Have good communication skills.

Team and location

Télécom Paris and Télécom SudParis are premier engineering schools in France and constituent
members of Institut Polytechnique de Paris. The University of Southern California is a leading
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research university in Los Angeles, California, United States. Both universities are consistently
ranked among the best universities worldwide (Shanghai Ranking, QS Ranking). Télécom Paris and
Télécom SudParis are located on the outskirts of Paris (around 45 minutes by train from the center
of Paris) at the center of the Paris-Saclay cluster—a fast-growing research and industrial ecosystem.
The PhD position will be funded by the IMT Futur, Ruptures & Impacts 2026 programme https://
phd.imt.fr. The student will be integrated within the MM Team at LTCI lab and the ARMEDIA
Team at SAMOVAR.

How to apply

Please apply directly through this link including the following:

• A full CV.

• A motivation letter explaining your interest in the position (max 1 page).

• Transcript of records (grades).

• At least one recommendation letter.

The deadline for applying is February 15, 2026.
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