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Summary 
The objective of this thesis is twofold: the theoretical exploration of the connections between 

graph neural networks (GNNs) and causal inference methods; the practical development of critical 

mobile networks applications based on these tools. There are two main applications we target in 

this scope that are currently addressed by GNN: radio resource management (RRM) and predictive 

maintenance (PM) of wireless networks. The first application requires fast and scalable algorithms 

which generalize to new use-cases in 6G and future wireless systems. The second application 

requires accurate and explainable predictions, which help to identify the root cause of faults. We 

believe that causal inference offers a formal framework which makes it possible to generalize and 

improve on our current work.  

RRM problems are inherently based on an underlying graph, representing the wireless network, 

whose properties can be efficiently learned by GNNs. GNNs are promising to tackle problems that 

are currently intractable due to their high computational complexity or lack of mathematical 

model. There is a myriad of such problems including UE-AP association, power control, precoding, 

scheduling in frequency and time, at the transmitter side; and at the receiver side: channel 

estimation and active user detection. We aim at developing a meta-learning GNN framework 

generalizing to a large class of resource allocation problems, constraints, objective functions. 

Causal inference techniques will help to fuse together data arising from different environments 

and data distributions. One of the purposes of this thesis is to extend the GNN framework from 

an offline to an online setting with data-fusion utilizing both simulated data generated offline and 

online data collected from different systems. 

As the complexity and the size of telecommunication networks increases, maintenance becomes 

an increasingly challenging task, demanding intelligent algorithms for decision-making. Our team 

has recently developed a data-driven approach to detection and prediction of faults in the 

hardware components of base stations, leveraging the alarm logs produced by the network 

elements. There are two natural graph structures that we can leverage on our data: the topology 

of the base stations, and the correlation structure between different alarm types. GNNs can 

incorporate both these graph structures in a predictive model. Recent internal work has already 

shown this approach's potential. Although the above-mentioned graph structures can be 

interpreted causally, the GNN model lacks explainability, which is crucial for this kind of application. 

To this end, a further goal of this thesis is providing a causal interpretation to the GNN model.  

. 
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Description 
In this section we provide more details about the relevant applications which motivate the need 

to bring together GNNs and causal reasoning. 

RRM applications 

In wireless communications, radio resource management (RRM) consists in allocating the physical 

resources (frequency, time, power, etc.) between pairs of transmitter-receiver devices to optimize 

some desired metrics such as spectral efficiency, age of information, power consumption or 

energy efficiency. An important metric is the signal-to-interference-plus-noise-ratio (SINR) which 

indicates the quality of a received signal. A device's SINR value has a direct impact on the data rate 

received by the device. These problems usually fall into the category of constrained optimization 

problems. They can be convex or non-convex, continuous or discrete, deterministic or stochastic, 

centralized or distributed, offline or online.  

For some problems, the state-of-the-art solutions (e.g., optimal algorithms) cannot be computed 

in practice due to their high computational complexity. For this reason, we develop low complexity 

approximations that are implementable in real systems. GNNs are promising tools as they can 

efficiently learn the non-Euclidean properties and invariances of wireless communication graphs. 

Furthermore, their time complexity is linear in the graph size, which makes them massively 

scalable. An example of such model applied to RRM is the random edge GNN [Eisen 2020] which 

outperforms classical deep learning models such as multilayer perceptron (MLP) and convolutional 

neural network (CNN). The authors of [Shen 2023] discuss the benefits and limitations of GNNs 

for wireless problems. 

Recent work in Bell Labs [Salaün 2022] shows that GNN reaches unprecedented performance and 

generalizability for precoding and power control problems in 6G and beyond wireless networks. 

This work targeted Cell-Free Massive MIMO - a key 6G wireless technology. We believe that GNNs 

could be applied to other resource allocation problems in an analogous way. However, developing 

a GNN optimized for a single task in a specific setting, as commonly done in literature, limits its 

applicability. Indeed, such models must often be reworked when deployed in a system with 

divergent constraints. For this reason, we adopt a meta-learning perspective. The goal is to design 

a meta-model that learns the representation shared by several RRM tasks. This meta-model can 

then be specialized (trained on specific data) and deployed seamlessly on a wide range of use-

cases in various environments, with different system requirements and configurations. 

Once deployed, the meta-model may need to adapt to the real environment quickly, with few 

observations. The data distribution in the real-case scenario can differ considerably from training 

data. Recent work has shown that few-shot learning and speed of adaptation improve if we 

leverage the invariances across environments. If we use the correct representation variables and 

know the causal mechanisms describing their interaction, changes in distribution across 

environments are sparse and controlled, increasing the speed of adaptation as a result [Bengio 

2019]. 

A typical input of RRM algorithms is the channel state information (CSI) which characterizes the 

signal propagation in the environment. When the channel is known within its coherence time, we 

refer to instantaneous CSI. In contrast, statistical CSI refers to the channel statistics over a longer 

timescale than the channel coherence time. In practice the CSI is estimated and can thus be noisy 

or delayed depending on the wireless system’s capabilities and requirements. 
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RRM machine learning models can be either offline or online. Offline methods are trained outside 

the wireless system before deployment. When deployed, they are executed independently of any 

past/future CSI and allocation. These schemes can work with both perfect and imperfect (noisy) 

CSI, but do not consider the temporal effect of the environment. We also refer to these methods 

as one-shot. Online algorithms allocate resources over-time given potentially time-varying and 

noisy CSI. The online setting can consider user mobility, changing environment and objective, 

delayed or missing CSI at certain times. An online model can continuously adapt to these changes, 

while an offline model must be frequently retrained to avoid model drift issues between training 

and deployment. However, online models have poor performance when initially deployed and 

usually require a large amount of data before reaching acceptable performance. Moreover, 

training in a real system is significantly more costly than in a simulated environment.  

Integrating the advantages of offline and online methods in a unique data-driven approach is a 

challenging but crucial task. Since online and offline data rely on distinct representations of 

channel state information, the associated data distributions cannot be naively identified. Causal 

analysis [Pearl 2009, Bareinboim 2016] provides a mathematical framework for formalizing this 

data-fusion problem. Online and offline data share part of the underlying structural causal 

relationships, and this invariance can be leveraged to transfer knowledge from the offline to the 

online case. Similar techniques can also be applied to transfer data and models across different 

systems, sharing common causal mechanisms. The goal is to explore the applicability of causal 

inference techniques to data fusion and implement machine learning models for RRM which can 

learn simultaneously from online and offline data.  

Predictive Maintenance applications 

As the complexity and size of telecommunication networks increases, maintenance becomes an 

increasingly challenging task, demanding intelligent algorithms for decision-making. Our team has 

recently approached this predictive maintenance task in a data-driven way, leveraging the 

thousands of alarm logs produced daily by the mobile network base stations [Massaro 2023]. The 

alarms data carries two natural graph structures: we know which device issues the alarm and its 

location in the network and base station topology (spatial proximity); we know when each device 

issue an alarm and when alarms are firing together (temporal proximity). Both these graph 

structures can be leveraged and incorporated in the predictive model. Ongoing research has 

shown that GNNs can encode the network and devices topology into the predictive model, leading 

to an improvement in faults prediction and showing the potential of this approach. For instance, 

predicting the fault of a device/node in a network can be rephrased as a node classification task. 

The GNN structural bias is crucial, as the anomaly of one device could be indicated by anomalies 

on the neighboring devices.  

Both the spatial and temporal graph structures are directed acyclic graphs, which can be 

interpreted causally (e.g., Granger causality for the temporal graph). Yet the GNN model lacks a 

causal interpretation, which would be useful for explaining the outcome of a prediction. If the GNN 

model entails a causal model, it could be used to estimate causal effects and to provide robust 

root cause interpretation of faults. Some seminal work in this direction has been recently spelled 

out [Zečević 2021]. In our setting, we can assume that the behavior of each base station is 

characterized by a few causal mechanisms depending on the aggregation of parent's nodes in the 

causal graph, hence reflecting the standard GNN structural bias. On the theoretical level, the goal 

is to generalize the standard notion of structural causal model [Pearl 2009] to this setting. On the 

practical level, apply the developed causal inference tools to the predictive maintenance task. 
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