
Compression and Efficient Processing of Graph Data: From
Signal Processing to Deep Learning

▶ Research theme: Graph signal processing, graph machine learning, geometric deep learning

▶ Keywords: Graph signals, compression, graph coarsening

▶ Research groups: Télécom Paris, LTCI, Télécom SudParis, SAMOVAR, Institut Polytech-
nique de Paris, University of Southern California, STAC Lab

▶ Advisors: Jhony H. Giraldo (jhony.giraldo@telecom-paris.fr),
Aref Einizade (aref.einizade@telecom-paris.fr), Antonio Ortega (aortega@usc.edu)

▶ Starting date and duration: 5-6 months starting in Spring 2026 (March/April)

Context

Graph signal processing (GSP) [1] and graph machine learning (GML) [2] are research fields that
aim to generalize classical concepts from signal processing and machine learning to data defined
on graphs. For example, in GSP, classical operations such as filtering, sampling, and reconstruction
are extended to graph signals, i.e., functions defined over the vertices of a graph [3]. In GML, neural
network architectures are, for example, adapted to graph-structured data, leading to models such
as graph neural networks [4], message passing neural networks [5], and their physics-informed
geometric counterparts [6, 7].

GSP and GML are crucial because graph-structured data appear in numerous applications,
including social networks, the web, recommender systems, biological networks, and knowledge
graphs, among others [8, 9]. A common challenge across these domains is the massive scale of the
underlying graphs, which often contain millions or even billions of nodes and edges [10]. There-
fore, it becomes essential to compress both the graph topology and the signals defined on it, which
also enables efficient learning and processing on the compressed data.

In the GSP literature, a large body of work has addressed the problems of sampling and re-
construction of graph signals in a principled manner [3, 11, 12]. These works provide theoreti-
cal guarantees for reconstructing graph signals from samples based on spectral properties of the
graph, guiding the design of optimal or near-optimal sampling sets [13, 14]. Concurrently, in the
GML community, autoencoder-based architectures have been developed to learn compressed la-
tent representations of graph data, such as graph autoencoders, variational graph autoencoders,
and differentiable graph pooling methods [15, 16].
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Despite these advances, the problem of jointly compressing and decoding both the graph topology
and the graph signals remains a major open challenge. This task has broad implications, ranging
from graph compression and storage to efficient processing of relational datasets in domains such
as social networks, the web, and biological systems. This internship aims to develop robust and
mathematically sound methodologies for the joint compression of graph data and topology. Our
ultimate goal is to achieve more efficient GSP and GML by developing new methods to reduce
the size of the graph and graph signal as much as possible without significantly affecting the task
outcome compared to directly using the original graph and signals.

Candidate profile

We are looking for candidates:

• Currently pursuing an M2 in engineering, data science, computer science, applied mathemat-
ics, signal processing, statistics, or equivalent, with a strong background in signal processing
and machine learning. The student should have a genuine interest in working in graph signal
processing and geometric deep learning.

• Have strong programming skills in Python (including PyTorch).

• Have a genuine interest in understanding the mathematics behind graph signal processing
and geometric deep learning (this is a strong requirement).

• Have good communication skills.

Outstanding candidates may be considered for continuation into a PhD on the same topic, sub-
ject to performance and funding availability. This internship serves as an initial step toward
developing more efficient geometric deep learning models for relational data.

Team and location

Télécom Paris and Télécom SudParis are premier engineering schools in France and constituent
members of Institut Polytechnique de Paris. The University of Southern California is a leading
research university in Los Angeles, California, United States. Both universities are consistently
ranked among the best universities worldwide (Shanghai Ranking, QS Ranking). Télécom Paris
and Télécom SudParis are located on the outskirts of Paris (around 45 minutes by train from the
center of Paris) at the center of the Paris-Saclay cluster—a fast-growing research and industrial
ecosystem. The internship position is part of the ongoing project DeSNAP – Deep Simplicial Neural
Networks for Advanced Geometry Processing, funded by ANR (French National Research Agency). The
student will be integrated within the MM Team at LTCI lab.

How to apply

Please send your application material (PDF format; in English) by email to Jhony H. Giraldo, Aref
Einizade, and Antonio Ortega, including the following:
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• A full CV.

• A motivation letter explaining your interest in the position (max 1 page).

• Transcript of records (grades).

The applications will be reviewed on a rolling basis until the position is filled.
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